Compact FTIR Spectrometer for total column measurement in urban environments

Jia Chen*, Elaine Gottlieb, Steven Wofsy
Harvard University, USA
Kelly Chance
Smithsonian Astrophysics Observatory, USA
Christoph Gerbig and Dietrich Feist
Max-Planck Institute for Biogeochemistry, Germany

jiachen@seas.harvard.edu
Outline

- Introduction
- How does FTS work and its “strange features”
- Measurement on the roof of Boston University
- Future plan
Measuring Greenhouse Gas Emission in Urban Areas

Surface measurement

Vertical column measurement

Ground-based

Satellite-based

High – resolution room-sized spectrometer

Low – cost transportable spectrometer

Hour (MST)

FTS

CO₂

H₂O

NH₃

CO

CH₄

CO₂

H₂O

NH₃

CO

CH₄
BRUKER IFS125HR

Scanner Compartment
1. Scanner
2. Scanner data cable
3. 2nd light barrier
4. Scanner motor

Detector Compartment
5. Beam splitter (λ-dependent)
6. Detector 1 (InGaAs)
7. Detector 2 (Si-diode)

Source Compartment
1. NIR source (Tungsten lamp)
2. MIR source (Globar)
3. Temperature switch
4. Source-selection mirror
5. movable mirror (source <-> Solartracker)
6. Solartracker inlet
7. 1st Aperture

Interferometer Compartment
8. Beam splitter (CaF₂)
9. Retroreflecting Mirror
10. adjustable prism
11. Laser detector
12. Laser detector
13. status LEDs
14. 1st light barrier
15. Scanner with Retroreflecting Mirror
16. 2nd Aperture
Comparison TCCON and our instrument

<table>
<thead>
<tr>
<th></th>
<th>TCCON</th>
<th>Our spectrometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral resolution</td>
<td>0.02 cm⁻¹</td>
<td>0.1 cm⁻¹</td>
</tr>
<tr>
<td>Size</td>
<td>Room</td>
<td>1m x 1m (same size as TCCON Sun tracker)</td>
</tr>
<tr>
<td>Cost spectrometer</td>
<td>300000 dollars</td>
<td>40000 dollars</td>
</tr>
<tr>
<td>Cost suntracker</td>
<td>55000 dollars</td>
<td>3000 dollars or less</td>
</tr>
<tr>
<td>Precision</td>
<td>ca. 0.1 ppm (1σ)</td>
<td>under investigation</td>
</tr>
<tr>
<td></td>
<td>5 min integrating time</td>
<td></td>
</tr>
</tbody>
</table>

Tradeoff between spectral resolution and size/cost Possible to achieve the same precision?
Outline

- Introduction

- How does FTS work and its “strange features”

- Measurement on the roof of Boston University

- Future plan
Setting the Gold Standard in FT-IR

Thermo Scientific Nicolet 6700 & 8700 Spectrometers

Approximately: 1m x 1m

www.thermo.com/ftir
FTS using diffuser for gathering sun light
Why Use Diffuser?

Conventional TCCON instrument:

Our FTS:

- Critical optical alignment
- Mirrors not rugged
- Observe only part of the sun (sunfield of view: 0.5°)

Weather proof, easy alignment
Whole sun observing -> insensitive to sun variability (acceptance angle > sun field of view)

Light is divergent
1. Central burst -> low resolution information
 Side-lobes -> high resolution information

2. Interferogram is infinitely long

3. Interferogram is symmetric at x – axis -> spectrum is real
Problems we are confronted with

- Asymmetry of the spectrum and line-broadening

- Negative Absorption
Measured spectrum (CO$_2$ region)

Spectrum broadened and asymmetric
Influence of divergent light?

1) Lower spectral resolution

\textit{Off-axis beam and on-axis ray interfering cause ‘self - apodization’ in interferogram}

2) Ring pattern image at detector

\textit{Different part of detector see different Phase of interference pattern}

\textbf{Fundamental mode (On-axis Ray)}

\textbf{Side mode (off-axis ray)}
Improved spectrometer design for high spectral resolution

Iris selects the “wanted” information – collimated light
Comparison our FTS with/without iris

New design improves spectral resolution, looks promising
Comparison TCCON (jena) and our Suntracker

Bruker Solar Tracker A547
(Quadrant diode for sun tracking + 2 mirrors)
Active tracking

Our sun tracker
(star tracker + aluminum foil)
Programmable – inverse sun clock
Problems we are confronted with

- Asymmetry of the spectrum and broadening

- Negative Absorption
“Discovery”: negative absorption
Phase spectrum

\[\text{Phase spectrum} = \arctan\left(\frac{\text{Imaginary (spectrum)}}{\text{real (spectrum)}} \right)\]

--- ideal phase spectrum
--- real phase spectrum

Interferogram asymmetric
Negative to positive: phase correction

Intensity vs. Wavenumber (1/cm)

- Inappropriate phase correction
- Corrected phase correction

Water absorption

4000 5000 6000 7000 8000 9000 10000
-1 0 1 2 3
Outline

- Introduction

- How does FTS work and its “strange features”

- Measurement on the roof of Boston University

- Future plan
First deployment: on the roof of Boston University: 42.2N, 71.5W
Simple Suntracker: approx. half of sidereal rate in altitude/azimuth directions
Promising spectrum quality: as narrow as TCCON (izana), symmetric lineshape
Comparison TCCON and Harvard FTS (CH$_4$ absorption)

Promising spectrum quality: as narrow as TCCON (izana), symmetric lineshape
Comparison TCCON and Harvard FTS (CO$_2$ absorption)

Promising spectrum quality: as narrow as TCCON (izana), symmetric lineshape
Simple retrieval*

*based on satellite retrieval program developed by k. Chance

Normalization with oxygen @ 1.3 µm: Optical pathlength uncertainty and scattering effect are eliminated
Fitting result O_2 (noon time): 22.76%

Comparison between fit and measurement

Good fit agreement despite of imperfect modelling of instrument function
Fitting result CO\textsubscript{2} (noon time): 413.7 ppm
Dry-mole fraction (rationed with oxygen): 380.8 ppm

Comparison between fit and measurement

Good fit agreement despite of imperfect modelling of instrument function
Conclusion

- Compact spectrometer
 - *Internal iris selecting collimated light*
 - *Simple diffuser + inverse sun clock*

- Promising spectral quality

- Straightforward retrieval scheme provides good fit result
Future

Instrument calibration at Caltech

Measurement Verification at Mt. Wilson

On Top of Prudential building

Where else to measure?
WRF – VPRM Simulation in Boston
John, Bruce
Frank Hase
Barry McManus
David Sayres